
Elasticsearch-Quality
Full Text Search in Postgres 

with Tantivy
Philippe Noël



Outline

- Current support for search in Postgres

- What is missing and why it needs to be better

- How pg_search is built to solve these limitations

- What pg_search can be used for (hybrid, full-text, faceting, etc.)



Useful Jargon

- Tokenization: splitting text into searchable chunks

- Stemming: reducing words to their root form

- Inverted Index: data structure used for efficient full text search

- Faceting/aggregations: computing metrics/buckets over FTS results

- Elastic DSL: domain-specific query language used by Elastic for FTS



Who am I?

- Philippe Noel, CEO of ParadeDB

- Originally from Rivière-du-Loup, Québec

- Previously worked on browser security and product at Microsoft Azure

- My Postgres Life interview: https://postgresql.life/post/philippe_noel/



What is ParadeDB?

- Elasticsearch alternative built on Postgres

- Packaged as two Postgres extensions

- pg_search: Full text search with BM25

- pg_analytics: Read data lakes (e.g. S3) and table formats (e.g. Iceberg)

- Built in Rust



Why use ParadeDB?

- Users migrate from Elastic to ParadeDB for

- Data reliability (Transaction safe search)

- Data freshness & operational simplicity (No ETL)

- No schema changes or denormalization

- “Just use Postgres”



Who is ParadeDB?

- Ming Ying

- Neil Hansen

- Eric Ridge

- Myself (hi!)



What is Full Text Search (FTS)?

- Query documents by the presence of specific keywords or phrases

- Can be simple or very complex

- Two components: indexing and querying

- Indexing: Preprocessing documents for rapid searching later

- Querying: Searching the index to retrieve some information



Full Text Search vs Vector Search

- Also known as similarity search

- Is a complement to, not a substitute for, full text search

- Matches documents by semantic meaning, not specific keywords

- pgvector is a Postgres extension for vector search



Full Text Search in Postgres

- Three main tools to do FTS in Postgres:

- LIKE operator

- ts_vector + GIN index

- pg_trgm



LIKE Operator

- column_name LIKE pattern syntax

- e.g. SELECT * FROM users WHERE name LIKE 'John%'

- Limitations:

- Slow performance over large datasets

- Very limited FTS functionality

- No relevance scoring



ts_vector + GIN index

- The “real” implementation of full text search uses the ts_vector data type

- Stores the tokenized, stemmed representation of text

- Results can be ranked with the ts_rank function using TF-IDF

- GIN index constructs an inverted index over ts_vector columns, which improves 

query performance



pg_trgm

- A built-in Postgres extension that tokenizes text into tri-grams

- Tri-grams split text into groups of 3 characters. For instance, the tri-grams of “cheese” 

are “che”, “hee”, “ees”, and “ese”.

- Useful for basic autocomplete

- Would return for search like “chees”



What Postgres Full Text Search is Missing

- BM25 relevance

- More powerful tokenizers and token filters

- Elastic DSL-style, advanced FTS queries (i.e. relevance tuning, dismax, etc.)

- Fast facets and aggregations



What is BM25?

- Term saturation

- Factors in document length



Introducing pg_search

- An extension that brings Elasticsearch-quality FTS to Postgres

- Built in Rust with pgrx

- Uses a FTS library called Tantivy



What is Tantivy?

- Rust-based search engine library

- Heavily inspired by Lucene (the search library used by Elasticsearch)

- Support for fast FTS and faceting

- BM25 scoring by default

- Inverted index and columnar storage



How is pg_search Built?

- Four key components

- Custom FTS operator @@@

- Custom Postgres index

- Query builder API

- Custom scan



Custom FTS Operator

- @@@ is our FTS operator that resolves a query against a text string, returning true if the 

text is a match

- Can be dropped into any Postgres query

- i.e. SELECT * FROM mock_items WHERE id < 10 AND description @@@ 

'keyboard'

- Friendly to JOINs, ORDER BY, GROUP BY, etc.



Custom Index

- Running @@@ on every row is slow – this is called a sequential scan

- Our custom index, the BM25 index, constructs an inverted index over the text field

- Works exactly like other built-in Postgres indexes (i.e. B-tree) for index construction, 

updates, vacuums, and scans

- One exception: the BM25 index is a covering index



Query Builder API

- Beyond simple text queries, queries can take the form of complex JSON objects

- The right-hand side of @@@ can also accept JSON

- Our query builder functions make it easy to construct this JSON



Custom Scan

- The Postgres custom scan API allows us to take control of other parts of the query 

beyond WHERE…@@@

- Enables three key use cases:

- Predicate pushdown

- BM25 scoring

- Fast facets/aggregations



Predicate Pushdown

- Consider SELECT * FROM mock_items WHERE description @@@ 'keyboard' 

AND rating < 5

- Without a custom scan, Postgres will perform separate scans over description and 

rating, even if rating and description are in the BM25 index



BM25 Scoring

- Consider SELECT * FROM mock_items WHERE description @@@ 'keyboard'

- How do we return BM25 scores to the user?

- The custom scan can “project” a score_bm25 column into the result



Fast Facets/Aggregations

- Consider SELECT COUNT(id), description FROM mock_items WHERE description 

@@@ 'keyboard' LIMIT 10

- If millions of results are found, COUNT(id) will be very slow

- Luckily, Tantivy has the concept of fast fields



Fast Fields

- Fields indexed as “fast” are stored in a column-oriented fashion

- A custom scan can return id to COUNT in batches (i.e. columns)

- Custom scans can also be parallelized

- Result: a column-oriented, vectorized, parallelized faceting engine



Use Cases

- Every software application needs search and analytics

- Companies who want to stick with Postgres or migrate off Elastic

- UPDATE-heavy workloads like e-commerce search

- Faceted search for SaaS applications

- Hybrid search for improving recall



Deployment

- ParadeDB pg_search integrates with:

- AWS RDS/Aurora, GCP CloudSQL, etc.. via logical replication

- CloudNativePG for self-hosted deployments

- Ubicloud.com for a fully-managed solution



Thank You!
paradedb.com



Appendix



Hybrid Search



Faceted Search



Hierarchical Search


